Scientific Program

Conference Series Ltd invites all the participants across the globe to attend Annual Conference on Green Catalysis and Sustainable Energy Dubai, UAE.

Day 2 :

Conference Series Green Catalysis 2018 International Conference Keynote Speaker Christian Williams, photo
Biography:

Christian Williams is a Service provider to Kawasaki Heavy Industrials for the fully ASTM compliant laboratory commissioning including fuel chemistry support for the unique large scale gas to gasoline refinery in Ashgabat, Turkmenistan. Support to include laboratory construction, equipment installation, calibration and set up and data validation to staff training and ultimate performance testing and client handover

Abstract:

Almost every sector globally has been continuously improving their commitment to the environment and reduction in CO2 emissions. The aviation industry has understandably limited options to a degree due to its build and hence ability to easily reduce its CO2 emissions. All indications are that the aviation industry will continue to grow based on virtually every statistical dynamic and measurement. Due to limited mechanical options the aviation industry has been focused at reduction in CO2 emission commitments through the supply chain and its fuel use with a movement over to green biofuels and the carbon trading program. Many aviation customers, airports and even countries have publicly stated a commitment to green biofuels with some stating possible 100% movement over the next 10 years. Within ASTM D7566 you have a system of technical assessment and substantial testing requirement that all manufacturers of biofuels need to enter into for approval and use within the aviation industry. The study overviews the current approved aviation biofuel process, the fundamental fuel chemistry and fuel quality of biofuels and the challenges that could potentially face the industry when moving over to a large scale production of biofuels and use

Break: Networking and Refreshments Break @ Foyer 10:50-11:00
  • Design of Next Generation Catalysis | Green Catalysis in Petrochemical Industries | Green Catalysis and Pollution Control |Green Chemistry Metrics | Green Chemistry Catalysis and Fuel Cell | Green Chemistry Catalysis and Sustainable Energy |Green Energy | Green Economy
Location: Dubai
Speaker

Chair

Pon Selvan

Curtin University

Speaker

Co-Chair

Brajadulal Chatopadhyay

Jadavpur University, India

Session Introduction

Maryam Jabara

University of London, UK

Title: Waste to energy in developing countries

Time : 11:00-11:40

Biography:

Studying an engineering degree has helped me acquire critical analysis and logical thinking skills, which in turn resulted in improved decision making and greater confidence when dealing with and solving problems. One of the reasons I chose a degree in sustainable energy, was to give back to society in one way or another. I grew up in Nigeria, which meant that I had a front row seat to all the electricity problems and pollution that developing countries still experience today. Following a career path like this, one that is very dear to my heart, makes me determined and keeps me intent and focused in everything I do

Abstract:

This is a design based report which looks at the various and different waste-to-energy plants thathave been put into place in some major countries in Africa, from the Bill Gates funded JanickiOmni-processor in Senegal to the small-scale portable toilet, the “Blue Box”, in Kenya, and all theway to the different designs created by the Swedish company, Aquatron. It also highlights the major issues countries, especially developing ones, are suffering from and howthe urge to solve these problems brought about a greater interest in designing and developing morewaste management organisations with the key purpose of producing a cleaner, more sustainablesource of energy from the most unpredictable resource, human faeces.The challenges faced with turning waste into energy, whether faeces are in fact likely to be moreconstantly used later on as a fuel around the world, and a smaller scale proposed design system thatis cheap, easy and practical to use and that could potentially reduce any present complications, areall the aspects broadly accounted for in the main body to follow. Finally, all the reasons behind thedesign including the advantages of solid-liquid waste separation and how this increases theefficiency of the process are predominately touched upon.

Speaker
Biography:

Brajadulal Chattopadhyay is currently working in the Department of Physics, Jadavpur University, India. He has completed his Masters (1987) and PhD (1994) degrees from the University of Calcutta, India and worked at Bose Institute, India and Technical University of Delft, the Netherlands. He has been working in the field of bio-concrete development by using hot spring anaerobic bacteria to enhance the strength and durability of concrete structures since 2001 and published his work in many internationally reputed journals. He has already supervised 20 PhD students and hold one national and two international patents in his research career

 

 

Abstract:

Diabetes, the world largest metabolic disorder has become a serious threat to public health. The management of diabetes by synthetic drugs causes many unwanted complications. The  study was designed to explore an alternative herbal medicine (root Salep of Gymnadenia orchidis Lindl) against type-2 diabetes to achieve a complications free diabetes management. The Streptozotocin (STZ) induced-diabetic rats were supplemented with root Salep orally daily at an effective dose (200 mg/g of body weight). The body weights and fasting blood glucose levels were measured periodically for 32 days. After treatment period, the animals were sacrificed and glycosylated haemoglobin, lipid profiles, antioxidant enzymes levels, liver function enzymes etc. were determined. Phytochemically determined terpenoids was extracted from the root and orally supplemented (4 mg/g body weight) to the induced-diabetic animals. Normalization of fasting blood glucose levels, significant (P < 0.001) decrement of glycosylated haemoglobin percentage, liver enzymes activities and increase body weights and anti-oxidants levels were noted for the Salep supplemented diabetic rats. Terpenoids present an adequate amount in the root of Gymnadenia orchidis Lindl played the key role in such observations. Histoplathological parameters of kidney, liver and pancreas tissues were also examined to reveal the differences between treated and non treated groups. Here also improvement of insulin production has been revealed in diabetic groups treated with root Salep and treated with extracted terpenoids only. We can conclude that terpenoids plays the major role in reducing the diabetic condition and improving the overall health condition of the treated diabetic rats. The root Salep of Gymnadenia orchidis Lindl or its terpenoids may be used as potentially herbal therapeutic agent for long term and effective solution against type-2 diabetes mellitus

Engr Mohamed Hussein

University of Sharjah, UAE

Title: Energy consumption by equipments
Biography:

He started his research career as a research assistant at the Advanced Power & Energy Research Center at West Virginia University, Morgantown, the USA during his postgraduate studies. His main research topic was related to the control and operation of distributed generation. In addition, he was part of a research team for several projects funded by different US institutions such as Department of Energy, Department of Defense, and National Energy Technology Laboratory. Dr. Amer has carried out more than 33 industry- funded research projects, with total funds exceeded 3 million USD, related to energy savings, power system analysis, power system quality and transient stability of power systems. His research funding agencies include but not limited to Petroleum Development Oman, Occidental Oman, Petrofac, Authority for Electricity Regulation Oman (AER), Muscat Electricity Distribution Company, Oman Electricity Transmission Company

Abstract:

The rapid universal energy crisis, environmental pollution, and human impact on the climate accelerate the search for new material to evolve renewable energies which have different characteristics such as environment-friendly, cost-effective and highly efficient. These issues motivate researchers around the globe to develop new solutions for replacing the traditional fossil-based energy resources and studying different materials to enhance their structural and optical properties for using them effectively in solar cells, sensors, and other applications. Nanotechnology acquiring a lot of attention currently and large expectations have been built in the academic community as well as industry and investors to fabricate and evolve new structures at the nanoscale as well as adjusting their parameters such as energy band gap and efficiency to produce novel materials and devices in many applications and different fields. The purpose of this presentation is to cover the most recent advances of nanotechnology in sustainable energy applications. Solar cells are described as the most significant example of the contributions of nanotechnology in the energy sector which is the ultimate solution to one of the great challenges of our lifetime, i.e., the production and use of energy, without compromising our environment.

Engr Mohamed Hussein

University of Sharjah, UAE

Title: Energy consumption by equipments

Time : 12:10-12:40

Speaker
Biography:

He started his research career as a research assistant at the Advanced Power & Energy Research Center at West Virginia University, Morgantown, the USA during his postgraduate studies. His main research topic was related to the control and operation of distributed generation. In addition, he was part of a research team for several projects funded by different US institutions such as Department of Energy, Department of Defense, and National Energy Technology Laboratory. Dr. Amer has carried out more than 33 industry- funded research projects, with total funds exceeded 3 million USD, related to energy savings, power system analysis, power system quality and transient stability of power systems. His research funding agencies include but not limited to Petroleum Development Oman, Occidental Oman, Petrofac, Authority for Electricity Regulation Oman (AER), Muscat Electricity Distribution Company, Oman Electricity Transmission Company

Abstract:

The rapid universal energy crisis, environmental pollution, and human impact on the climate accelerate the search for new material to evolve renewable energies which have different characteristics such as environment-friendly, cost-effective and highly efficient. These issues motivate researchers around the globe to develop new solutions for replacing the traditional fossil-based energy resources and studying different materials to enhance their structural and optical properties for using them effectively in solar cells, sensors, and other applications. Nanotechnology acquiring a lot of attention currently and large expectations have been built in the academic community as well as industry and investors to fabricate and evolve new structures at the nanoscale as well as adjusting their parameters such as energy band gap and efficiency to produce novel materials and devices in many applications and different fields. The purpose of this presentation is to cover the most recent advances of nanotechnology in sustainable energy applications. Solar cells are described as the most significant example of the contributions of nanotechnology in the energy sector which is the ultimate solution to one of the great challenges of our lifetime, i.e., the production and use of energy, without compromising our environment.

Break: Lunch Break 12:40-13:40 @ Restaurant

Ajuy Sundar Vijayanandan

National Institute of Technology , India

Title: Studies on optical properties of greenly synthesized cobalt oxide nanoparticles

Time : 13:40-14:10

Speaker
Biography:

Ajuy Sundar Vijayanandan is currently pursuing his PhD at the Department of Chemical Engineering, National Institute of Technology Karnataka, India

Abstract:

The nanoparticle counterparts of cobalt oxide are found to have favorable magnetic, optical, light emission, charge transfer and electrochemical properties. The study elaborates optical properties of greenly synthesized nanoparticles using endophytic fungus A. nidulans that examines the ability of the nanocolloidal solution to convert light energy into thermal energy, which is a yardstick for solar energy application. An attempt has been made to compare the optical properties of the nanoparticles using experimental values and theoretical predictions. Optical transmittance of the nanoparticles obtained was higher than 65% in 550-850 nm containing visible spectrum and the experimental results were in accordance with the predictive datum. The absorption coefficient peak observed is close to the predictive value and is present in the visible region of the light. In addition, there was an excellent agreement between theoretical and experimental results in extinction coefficient and refractive index. Based on the findings, it can be contemplated that green synthesized cobalt oxide nanoparticles can be probable contenders for solar energy harvesting and photo voltaic applications.

 

Speaker
Biography:

Swapnil Dharaskar has completed his PhD from VNIT, Nagpur, India and Postdoctoral studies from Deparment of Green Chemistry, Lappeenranta University of Technology, Finland. He is the Head of Chemical Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar. He has published more than 30 papers in reputed journals and has been serving as an Editorial Board Member of repute. He is the Life Member of IIChE, ISTE, SPE, ISRD, IAENG, etc.

Abstract:

Removal of fluoride from living entities is the foremost task as it is non-biodegradable and harmful pollutant mostly found in groundwater. In this study Zeolitic Imidazolate Framework‑8 (ZIF-8) nanoparticles synthesis method and its efficiency in fluoride removal was examined from an aqueous phase. The optimum experiment value was developed by Taguchi method and characterization of nanoparticles was done by Fourier-transform infrared spectroscopy, X-ray powder diffraction and scanning electron microscope confirmed the particle and its particle size was 200-220 nm by Zetasizer. The result indicates time was considered as important factor in fluoride removal by ZIF-8 nanoparticle followed by adsorbent dosage, stirring rate, temperature, and pH. The optimum conditions for fluoride removal by ZIF-8 nanoparticles were found as time=15 min, adsorbent dosage 0.06 g/L, Stirring=400 RPM, temperature=20 ºC, pH=8. Regression analysis (R2=0.90) displayed the good covenant in predicted and experimental values. The experimental data showed that the adsorption system was shadowed by Langmuir isotherm model and isothermal multistage adsorption was also studied to understand in-depth of ZIF-8 nanoparticles for fluoride removal

Break: Panel Discussion